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In his presidential address to the American Economic 
Association (AEA), Milton Friedman (1968) warned 
not to expect too much from monetary policy. In 
particular, Friedman argued that monetary policy could 
not permanently influence the levels of real output, 
unemployment, or real rates of return on securities. 
However, Friedman did assert that a monetary authority 
could exert substantial control over the inflation rate, 
especially in the long run. The purpose of this paper* is to 
argue that, even in an economy that satisfies monetarist 
assumptions, if monetary policy is interpreted as open 
market operations, then Friedman's list of the things that 
monetary policy cannot permanently control may have to 
be expanded to include inflation. 

In the context of this paper, an economy that satisfies 
monetarist assumptions (or, a monetarist economy) has 
two characteristics: the monetary base is closely connect-
ed to the price level, and the monetary authority can raise 
seignorage, by which we mean revenue from money 
creation. We will show that, under certain circumstances, 
the monetary authority's control over inflation in a 
monetarist economy is very limited even though the 
monetary base and the price level remain closely con-
nected. In particular, we will demonstrate that this is true 
when monetary and fiscal policies are coordinated in a 
certain way and the public's demand for interest-bearing 
government debt has a certain form.1 

The public's demand for interest-bearing government 
debt constrains the government of a monetarist economy 

in at least two ways. (For simplicity, we will refer to 
publicly held interest-bearing government debt as govern-
ment bonds.) One way the public's demand for bonds 
constrains the government is by setting an upper limit on 
the real stock of government bonds relative to the size of 
the economy. Another way is by affecting the interest rate 
the government must pay on bonds. The extent to which 
these constraints bind the monetary authority and thus 
possibly limit its ability to control inflation permanently 
partly depends on the way fiscal and monetary policies 
are coordinated. To see this, consider two polar forms of 
coordination. 

On the one hand, imagine that monetary policy 
dominates fiscal policy. Under this coordination scheme, 
the monetary authority independently sets monetary 
policy by, for example, announcing growth rates for base 
money for the current period and all future periods. By 
doing this, the monetary authority determines the amount 
of revenue it will supply the fiscal authority through 
seignorage. The fiscal authority then faces the constraints 

*Partly written during Sargent's visit at the National Bureau of Economic 
Research in Cambridge, Massachusetts. Danny Quah wrote Appendix C, 
performed all the computations, and gave very helpful criticisms and suggestions. 

'We will not exhaust the possible circumstances under which the monetary 
authority's control over inflation is very limited in monetarist economies. W e will 
not even touch on the variety of nonmonetarist economies in which this is true. 
For examples of such nonmonetarist economies and a more general discussion of 
the ideas that underlie this paper, see Bryant and Wallace 1980. The messages of 
our paper are very similar to those of Miller 1981 and Lucas 1981a, b. Other 
related papers are McCallum 1978, 1981, and Scarth 1980. 
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imposed by the demand for bonds, since it must set its 
budgets so that any deficits can be financed by a 
combination of the seignorage chosen by the monetary 
authority and bond sales to the public. Under this 
coordination scheme, the monetary authority can perma-
nently control inflation in a monetarist economy, because 
it is completely free to choose any path for base money. 

On the other hand, imagine that fiscal policy dominates 
monetary policy. The fiscal authority independently sets 
its budgets, announcing all current and future deficits and 
surpluses and thus determining the amount of revenue 
that must be raised through bond sales and seignorage. 
Under this second coordination scheme, the monetary 
authority faces the constraints imposed by the demand for 
government bonds, for it must try to finance with 
seignorage any discrepancy between the revenue de-
manded by the fiscal authority and the amount of bonds 
that can be sold to the public. Although such a monetary 
authority might still be able to control inflation permanent-
ly, it is less powerful than a monetary authority under the 
first coordination scheme. If the fiscal authority's deficits 
cannot be financed solely by new bond sales, then the 
monetary authority is forced to create money and tolerate 
additional inflation. 

Under the second coordination scheme, where the 
monetary authority faces the constraints imposed by the 
demand for government bonds, the form of this demand is 
important in determining whether or not the monetary 
authority can control inflation permanently. In particular, 
suppose that the demand for government bonds implies 
an interest rate on bonds greater than the economy's rate 
of growth. Then, if the fiscal authority runs deficits, the 
monetary authority is unable to control either the growth 
rate of the monetary base or inflation forever. 

The monetary authority's inability to control inflation 
permanently under these circumstances follows from the 
arithmetic of the constraints it faces. Being limited simply 
to dividing government debt between bonds and base 
money and getting no help from budget surpluses, a 
monetary authority trying to fight current inflation can 
only do so by holding down the growth of base money and 
letting the real stock of bonds held by the public grow. If 
the principal and interest due on these additional bonds 
are raised by selling still more bonds, so as to continue to 
hold down the growth in base money, then, because the 
interest rate on bonds is greater than the economy's 
growth rate, the real stock of bonds will grow faster than 
the size of the economy. This cannot go on forever, since 

the demand for bonds places an upper limit on the stock of 
bonds relative to the size of the economy. Once that limit 
is reached, the principal and interest due on the bonds 
already sold to fight inflation must be financed, at least in 
part, by seignorage, requiring the creation of additional 
base money. Sooner or later, in a monetarist economy, 
the result is additional inflation. 

The first section of the paper establishes a version of 
this result in a model that is extremely monetarist. By 
imposing a simple quantity theory demand for base 
money, the model allows the government to raise seignor-
age and goes as far as anyone would go in assigning 
monetary policy influence over the price level. It is also 
monetarist in giving monetary policy influence over 
almost no real variables. Yet the model implies that, 
although fighting current inflation with tight monetary 
policy works temporarily, it eventually leads to higher 
inflation. 

In the second section, we amend the model of the first 
section to include a more realistic demand for base 
money, one that depends on the expected rate of inflation. 
In a particular example of this second monetarist model, 
tighter money today leads to higher inflation not only 
eventually but starting today; tighter money today lacks 
even a temporary ability to fight inflation. While this 
example is extreme and may overstate the actual limits on 
tight money, it has the virtue of isolating a restrictive force 
on monetary policy that is omitted in the first section and 
that probably exists in the real world. 

Tighter money now can mean 
higher inflation eventually 
We describe a simple model that embodies unadulter-
ated monetarism. The model has the following features: 

a. A common constant growth rate of n for real income 
and population. 

b. A constant real return on government securities that 
exceeds n. 

c .A quantity theory demand schedule for base or 
high-powered money, one that exhibits constant 
income velocity.2 

A model with these features has the limitations on 

2In Appendix A, we analyze a simple general equilibrium model that implies 
all our assumptions. The model of that appendix has the virtue that, since 
individual agents are identified, policies can be compared in terms of the welfare 
of the individuals in the model. 
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monetary policy stressed by Milton Friedman in his 
AEA presidential address: a natural, or equilibrium, 
growth rate of real income that monetary policy is 
powerless to affect and a real rate of interest on govern-
ment bonds beyond the influence of monetary policy. We 
choose this model, one that embraces as unqualified a set 
of monetarist assumptions as we can imagine, to show 
that our argument about the limitations of monetary 
policy is not based on abandoning any of the key 
assumptions made by monetarists who stress the potency 
of monetary policy for controlling inflation. Instead, the 
argument hinges entirely on taking into account the future 
budgetary consequences of alternative current monetary 
policies when the real rate of return on government bonds 
exceeds n, the growth rate of the economy. 

We describe fiscal policy by a time path or sequence 
£>(1),D(2),. . . ,Z)( / ) , . . . , whereD(t) is measured in real 
terms (time t goods) and is defined as real expenditures on 
everything except interest on government debt minus real 
tax collections. From now on we will refer to D(t) as the 
deficit, but keep in mind thatD(t) equals the real deficit as 
ordinarily measured less real interest payments. For 
convenience, we label the current date t — 1. We describe 
monetary policy by a t imepath / / ( l ) , / / (2) , . . . ,H(t\..., 
where H(t) is the stock of base or high-powered money at 
time t. If, for simplicity, we assume that the entire 
government debt consists of one-period debt, then we can 
write the consolidated government budget constraint 
(consolidating the Treasury and the Federal Reserve 
System) as3 

(1) D(t) = \[H(t) ~ H(t-\)]/p(t)} 

+ \B(t) - B(t-l)[l+R(t-l)]} 

for t = 1 , 2 , . . . . We are lettingp(t) be the price level at 
time t, while R(t~ 1) is the real rate of interest on one-
period government bonds between time t~ 1 and time t\ 
B(t~ 1) [1 + R{t— 1)] is the real par value of one-period 
privately held government bonds that were issued at time 
t~ 1 and fall due in period t, where B(t~ 1) is measured in 
units of time t~ 1 goods and [1 + R(t— 1)] is measured in 
time t goods per unit of time t~ 1 goods. In equation (1), 
B(t) is government borrowing from the private sector 
between periods t and t+1, measured in units of time t 
goods. Equation (1) states that the deficit must be 
financed by issuing some combination of currency and 
interest-bearing debt. Finally, we let N(t) be the popula-
tion at time t. We assume that N(t) grows at the constant 

rate n, or that 

(2) TV(r-hl) = ( l + r t > V ( 0 

for t = 0 , 1 , 2 , . . . , with N(0) > 0 being given and n being 
a constant exceeding — 1. 

Dividing both sides of (1) by N(t) and rearranging 
gives the following per capita form of the government's 
budget constraint: 

(3) B{t)/N(t) = {[1 +R(t-l)]/(l+n)} 

X [B(t-1)/N(t-1)] + [D(t)/N(t)] 

- {[H{t)-H(t-l)]/[N(t)p(t)]}. 

We shall now use equation (3) and our monetarist 
model—assumptions a, b, and c—to illustrate a version of 
the following proposition: if fiscal policy in the form of the 
D(t) sequence is taken as given, then tighter current 
monetary policy implies higher future inflation. 

We specify alternative time paths for monetary policy 
in the following way. We take H( 1) as predetermined and 
let alternative monetary policies be alternative constant 
growth rates 8ofH(t)fort = 2 , 3 , . . where T is some 
date greater than or equal to 2. For t > T , we assume that 
the path of H(t) is determined by the condition that the 
stock of interest-bearing real government debt per capita 
be held constant at whatever level it attains att=T. The 
restriction on monetary policy from time T onward is 
consistent with there being a limit on the real debt per 
capita. Thus, with / / ( l ) taken as given, we assume that 

3Although the government collects income taxes on the interest payments on 
government debt, the pre-tax yield is what belongs in equation (1), as long as 
private securities and government securities are taxed at a common rate and as 
long as any change in B(t— 1) is offset by an equal change in K(t~ 1) in the 
opposite direction, where K(t~ 1) is private investment measured in time /—I 
goods. To see this, def ineg( t ) as government expenditures (not including interest 
payments) minus all taxes except taxes on private and government securities, and 
let r be the tax rate on interest earnings. Then the government cash flow constraint 
can be written 

g(t) — zRK(t—\) — zRB(t—\) = {[H(t)-H(t-\)]/p(t)) 

+ {B(t) — B(t—\)(\+R)}. 

Our Appendix A model implies complete crowdingout, which can be expressed 
as B(t— 1) + K(t~ 1) = B, a constant. Substituting B into the last equation gives 

g{t) — zRB ={[H(t)-H(t-l)]/p(t)) + {*(/)-*(/-1X1+*)} 

which is equivalent to (1) above, with D(t) =g(t) — rRB. 
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(4) H(t) = (l+B)H(t-l) 

for t = 2, 3, . . . , T and examine the consequences of 
various choices of 6 and 774 We will say that one 
monetary policy is tighter than another if it is character-
ized by a smaller 6. 

Notice that we have written equation (1) in terms of 
real debt and real rates of return. If we want to analyze a 
setting in which government bonds are not indexed, which 
is the situation in the United States today, then we must 
insure that anticipated inflation is the same as actual 
inflation. We impose that condition, in part, by supposing 
that both the path of fiscal policy, the D(t) sequence, and 
the path of monetary policy, 6 and T, are announced at 
t= 1 and known by private agents. Once we assume that, 
it does not matter whether nominal or indexed debt is 
issued from t = 1 onward.5 

Now note that assumptions a and c imply that the price 
level at any time t is proportional to the time t stock of base 
money per capita, H(t)/N(t), namely, that 

(5) p{t) = (\/h) [H(t)/N(t)] 

for some positive constant h. 
From equation (5) it follows that, for t = 2, . . . , T9 

one plus the inflation rate is given by p(t)/p(t~ 1) = 
Thus, when we specify monetary policy, a 

0 and a T, we are simultaneously choosing the inflation 
rate for periods t = 2, 3, . . . , T. We are interested in 
determining how the inflation rate for the periods after T 
depends on the inflation rate chosen for the periods before 
T. 

We do this in two simple steps. We first determine 
how the inflation rate after T depends on the stock of 
interest-bearing real government debt per capita attained 
at T and to be held constant thereafter, denoting that per 
capita stock by be(T). We then show how be(T) depends 
on 9. 

To find the dependence of the inflation rate for t > T on 
bd(T), we use equation (3) for any date t > T, substituting 
into it B(t)/N(t) = B{t-\)/N(t~\) = be(T) and H(t) 
= hN(t)p(t) as implied by (5). The result can be written 
as 

(6) 1 - [\/{\+n)]\p{t-\)/p(t)] 

= (m)/N(t)] + {[R(t-l)~n]/(l+n)}be(T))/h. 

Note that equation (6) makes sense only if the right-hand 
side is less than unity, a condition which itself places an 
upper bound on be(T) if [R(t—\) — n] is positive, as we 
are assuming. If that condition holds and 1) — n] is 
a positive constant, as stated by assumption b, then the 
right-hand side of (6) is higher the higher be(T) is. This in 
turn implies that the inflation rate is higher the higher 
be(T) is, a conclusion that holds for all t > T. 

To complete the argument that a tighter monetary 
policy now implies higher inflation later, we must show 
that the smaller 9 is, the higher be(T) is. To find be(T) and 
its dependence on 0, we first findB(1 )/N{ 1) = b( 1) and 
then show how to find the entire path 6(1), be(2), 
be(3),...,be(T). 

We solve for 6(1) from the t = 1 version of equation 
(3), namely, 

(7) 6(1) = {B(0)/[tf(l)p(l)]} + \P(l)/N(l)] 

- {[H(l) - H(0)]/m)pW]l 

Here, in place o f£ (0) [1 + 7?(0)], we have inserted £(0) 
+ p ( 1), 1?(0) being the nominal par value of the debt issued 
at t = 0. By making this substitution, we avoid assuming 
anything about the relationship between actual and 
expected inflation from time t = 0 to time t = 1. In 
conjunction with equation (5), equation (7) lets us solve 
for 6(1) in terms of £>(1), 7V(1), H( 1), H(0), and B(0). 
Note that 6(1) does not depend on 6. 

We now proceed to find be(2), be(3),..., be(T). Using 
equations (4) and (5) and the definition b(t) = B(t)/N(t), 

4The reader may have noted that the argument presented above does not 
depend on the magnitude of the D(t) sequence. For the same economy, another 
way to specify policy is to have (4) hold until some given bound on per capita real 
debt is reached and have monetary policy be determined thereafter by the 
condition that the per capita real debt be held constant at that bound. Under 
assumptions a, b, and c, the following proposition is true for rules of this kind: If an 
H(t) growth rate 6 and a D(t) sequence are such that the debt bound is reached at 
time TQ and if 0 < 6, then, under the H(t) growth rate 6, the given debt bound is 
reached at TQ < TQ and the inflation rate during the period from TQ to TQ is higher 
under the 6 policy than under the 0 policy. 

5This assumes a rational expectations equilibrium, which is equivalent to 
perfect foresight here because the model has no randomness. Thus, our 
statements involve comparing alternative paths for monetary and fiscal variables 
which are known in advance. The authorities are assumed to stick with the plans 
that they announce and not to default, in real terms, on the interest-bearing debt 
issued from time 1 onward, so that it is as if all interest-bearing debt were indexed. 
Such an assumption is appropriate for analyzing the alternative time sequences or 
strategies for monetary policy variables, despite the fact that governments have 
historically defaulted on substantial fractions of their interest-bearing debt by 
inflating it away. Such a default option is not available as a policy to which a 
government can plan to resort persistently. 

4 
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we can write equation (3) as 

(8) bit) = {[1 + R(f-l)]/(l+n$ b ( f - l ) 

+ [D(t)/N(t)\ - [h0/(l+6)] 

fort= 2,3, . . . , T. By repeated substitution, it follows for 
any t > 2 and t < T that 

(9) be(t) = 0(r, 1)6(1) + (Z ' v = 2 0(r , s)[D(s)/N(s)]) 

where 0(r, t) = 1 and, for t > s, 
0 M ) = + / i ( y ) ] ) / ( i + / i y -

It follows from (9) that be(T) is larger the smaller 8 is.6 

This completes our demonstration of a version of the 
proposition that less inflation now achieved through 
monetary policy on its own implies more inflation in the 
future. It is crucial for such a result that the real rate of 
return on government securities exceed n from T onward 
[see equation (6)] and that the path of fiscal policy given 
by £>(1), D(2), ... , D(t), . . . not depend on 8. 

Tighter money now can mean 
higher inflation now 
In the last section, we described circumstances in which 
tighter monetary policy lowers inflation in the present, but 
at the cost of increasing inflation in the future. Our having 
assumed a money demand schedule of the simplest 
quantity theory form [equation (5)] not only much 
simplified the analysis but also had the substantive aspect 
of ignoring any dependence of the demand for base 
money on the expected rate of inflation. This dependence 
is widely believed to be important; Bresciani-Turroni 
(1937) and Cagan (1956) found substantial evidence that 
it exists by studying countries that had undergone rapid 
inflation. This dependence complicates the dynamics of 
the influence of monetary policy on the price level. If the 
demand for money depends on the expected rate of 
inflation, then it turns out (see Sargent and Wallace 
1973) that the current price level depends on the current 
level and all anticipated future levels of the money supply. 
This sets up a force whereby high rates of money creation 
anticipated in the future tend to raise the current rate of 
inflation. As we shall show, this force can limit the power 

of tighter monetary policy to deliver even a temporarily 
lower inflation rate. 

We maintain all of the features of the last section 
except one: we replace equation (5) by7 

(10) H(t)/[N(t)p(t)] = (y,/2) - {(y2/2)p(t+l)/p(t)] 

for t > 1, with yx > y2 > 0. Equation (10) is a version of the 
demand schedule for money that Cagan (1956) used in 
studying hyperinflations. The equation is shown in our 
Appendix B to imply the following equation for the price 
level at t\ 

Pit) = (2/yj2;0(y2 /y1y[/ / (r+y)/7V(r+y)] . 

This equation expresses the current price level in terms of 
the current value and all future values of the per capita 
supply of base money. So the current price level and 
inflation rate depend not only on how tight money is 
today, but also on how tight it is for all tomorrows. If the 
situation is, as in the last section, that tighter money now 
causes looser money later, then this equation for p(t) 
suggests the possibility that tighter money today might fail 
to bring about a lower inflation rate and price level even 
today. We shall now provide an example in which this 
possibility is in fact realized. 

As in the last section, policy consists of a deficit 
sequence D(t), a date T after which monetary policy is 
determined by the condition that the real interest-bearing 
government debt per capita be held constant, and 8, the 
growth rate of the monetary base for periods before T. In 
the model of this section, the path of the price level before 
T depends on all of these aspects of policy and not just on 
8, as was true in the model of the last section. 

Appendix B describes a way of solving for the paths of 
the endogenous variables. Here we simply present an 
example in which a tighter monetary policy in the form of 
a lower 8 implies a uniformly higher price level and 
inflation rate. 

The economy of this example is characterized by ^ = 
3.0,y 2= 2.5 ,R = .05,andfl = .02. The common features 
of policy are a per capita deficit sequence d(t) with d(t) = 

6Equation (9) can be used to determine the D(t) sequences and the values of 9 
that satisfy the "if" clause of the proposition given in footnote 4. 

7Note that equation (5) is a special case of equation (10) with h = yj/2 and y2 

= 0. See Appendix A for an underlying model that implies (10) and all of our 
other assumptions. 
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A Spectacular Example of the Potential Effects 
of Tight and Loose Monetary Policy 

Tight Money: 0 = .106 Loose Money: 0 = .120 

Parameters 

ŷ  = 3.0 

y2 = 2.5 

PerCapita 

R = .05 
n = .02 

d(t) = .05 for f — 1,2, 
0 for t > 10. 

10. 

PerCapita 
Inflation Rate Bond Holdings Real Money Balanc 

Date lP(f+1)/Pffl] [B(t)/N(t)\ {H(t)/[N(t)p(t)}} 

(t) Tight Loose Tight Loose Tight Loose 

1 1.0842 1.0825 0.0811 0.0815 0.1202 0.1469 
2 1.0841 1.0808 0.1196 0.1180 0.1448 0.1490 
3 1.0841 1.0789 0.1592 0.1552 0.1449 0.1514 
4 1.0841 1.0768 0.2000 0.1933 0.1449 0.1540 
5 1.0841 1.0743 0.2420 0.2321 0.1449 0.1571 
6 1.0840 1.0716 0.2853 0.2718 0.1450 0.1606 
7 1.0840 1.0684 0.3297 0.3121 0.1450 0.1641 
8 1.0840 1.0647 0.3755 0.3532 0.1450 0.1691 
9 1.0839 1.0605 0.4227 0.3949 0.1451 0.1744 

> 1 0 1.0839 1.0556 0.4712 0.4372 0.1451 0.1805 

[H(0) + B(0)]/H(1) = 200/164.65 

.05 for t = 1,2, . . . , 1 0 and d{t) = 0 for r > 10; T = 10; 
and [//(0) + 2?(0)]///(l) = 200/164.65. Two different 
base money growth rates are studied: 6 = .106 and 6 = 
.120. The accompanying table compares the inflation 
rates, per capita bond holdings, and per capita real money 
balances for the economy under the two policies. It turns 
out that the price level at t = 1 is 1.04 percent higher 
under the smaller 6, that is, the tighter policy. 

This example is spectacular in that the easier, or 
looser, monetary policy is uniformly better than the 
tighter policy. (In terms of the model of Appendix A, the 
equilibrium for the looser monetary policy is Pareto 
superior to that for the tighter monetary policy.) In this 
example, the tighter current monetary policy fails to even 
temporarily reduce inflation below the level it would be 
under the looser policy.8 

Concluding Remarks 
We have made two crucial assumptions to obtain our 
results. 

One is that the real rate of interest exceeds the growth 

rate of the economy. We have made that assumption 
because it seems to be maintained by many of those who 
argue for a low rate of growth of money no matter how big 
the current deficit is. If we were to replace that assump-
tion, we would instead assume that the public's demand 
for government bonds is an increasing function of the real 
rate of return on bonds, with an initial range over which 
that demand is positive at rates of return that are negative 
or less than the growth rate of the economy. We would 
still assume that the quantity of bonds demanded per 
capita has an upper bound. A demand function for 
government bonds like this would imply that monetary 
policy helps determine the real rate of interest on 
government bonds and that, for some monetary policies 
entailing low enough bond supplies, seignorage can be 
earned on bonds as well as on base money. However, an 
analysis that included such a demand schedule for bonds 
would share with ours the implication that a sufficiently 

8See Appendix C for a discussion of how to find parameter values which 
imply this seemingly paradoxical price level behavior. 
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tight current monetary policy can imply growth in 
government interest-bearing indebtedness so rapid that 
inflation in the future is higher than it would have been 
with an easier current monetary policy. 

The other crucial assumption that we have made is 
that the path of fiscal policy D(t) is given and does not 
depend on current or future monetary policies. This 
assumption is not about the preferences, opportunities, or 
behavior of private agents, as is our first crucial assump-
tion, but is, rather, about the behavior of the monetary and 
fiscal authorities and the game that they are playing. 
Since the monetary authority affects the extent to which 
seignorage is exploited as a revenue source, monetary and 
fiscal policies simply have to be coordinated. The ques-
tion is, Which authority moves first, the monetary 
authority or the fiscal authority? In other words, Who 
imposes discipline on whom? The assumption made in 
this paper is that the fiscal authority moves first, its move 
consisting of an entire D(t) sequence. Given that D(t) 
sequence, monetary policy must be determined in a way 
consistent with it, if that is possible. [As we have seen, it 
may not be possible if the D(t) sequence is too big for too 
long.] Given this assumption about the game played by 
the authorities, and given our first crucial assumption, the 
monetary authority can make money tighter now only by 
making it looser later. 

One can interpret proposals for monetary restraint 
differently than we have in this paper, in particular, as 
calls to let the monetary authority move first and thereby 
impose discipline on the fiscal authority. In this interpre-
tation, the monetary authority moves first by announcing 
a fixed 6 rule like (4) not just for t = 2 , 3 , . . . , T, but for all 
t > 1. By doing this in a binding way, the monetary 
authority forces the fiscal authority to choose a D(t) 
sequence consistent with the announced monetary policy. 
This form of permanent monetary restraint is a mecha-
nism that effectively imposes fiscal discipline. Alternative 
monetary mechanisms that do impose fiscal discipline 
have been suggested, for example, fixed exchange rates or 
a commodity money standard such as the gold standard. 
Nothing in our analysis denies the possibility that mone-
tary policy can permanently affect the inflation rate under 
a monetary regime that effectively disciplines the fiscal 
authority. 
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Appendix A 
An Overlapping Generations Model 

That Generates Our Assumptions 

This appendix describes a simple formal model that implies the 
assumptions used in the preceding paper. The model is aversion 
of Samuelson's (1958) model of overlapping generations. 

We describe the evolution of the economy from time t = 1 
onward. The economy is populated by agents who each live two 
periods. In each period, only one type of good exists. At each 
time t > 1, there are born Nx(t) identical poor people who are 
endowed after taxes with ax units of the good when young and a2 
units when old. At each date t > 1 there are also born N2(t) 
identical rich people who are endowed after taxes with p units of 
the good when young and zero units when old. We assume that 
Nx(t) = (\+n)Nx(t~\) and N2(t) = ( l + « ) W 2 ( r - l ) for t 
> 1, with A^(0) and N2(0) given and positive and n> — 1. The 
total population is N(t) = Nx(t) + N2(t). 

There is available in this economy a physical technology for 
converting the time t good into the time t+1 good. In particular, 
if k(t) >k goods are stored at time t > 1, then (1+R )k(t) goods 
become available at time t+1. This is a constant returns-to-
scale technology with a constant real rate of return on invest-
ment ofR > 0. We assume that there is a minimum scale of k at 
which this investment can be undertaken and that this minimum 
scale and the endowments satisfy fi/2 > k > ax. We also 
assume that a legal restriction on intermediation prevents two or 
more of the poor from sharing investments, thereby preventing 
the poor from holding the real investment. 

The government issues both currency, which doesn't bear 
interest, and bonds, which do. The currency is held by the poor 
because government bonds are issued in such large minimum 
denominations that the poor cannot afford them. (Again, a legal 
restriction on intermediation is relied on to prevent two or more 
people from sharing a government bond.) There is no uncertain-
ty in the model, so that the rich will hold government bonds only 
if the real interest rate on bonds at least equals that on private 
investment, which must be at least as large as the yield on 
currency. 

As in our paper, the government finances a real deficit D(t) 
by some combination of currency creation and bond creation. 
The government's budget constraint is 

(Al) D(t)= {[H(t)-H(t~l)]/p(t)} 

+ [B(t) - B(t~W+R)] 

for t > 1, where H(t) is the stock of base or high-powered money 

(currency) measured in dollars,p(t) is the price level in dollars 
per time t goods, and B(t) is government borrowing (from the 
private sector) in time t goods. The government's real deficit 
D(t) is, then, measured in time t goods. 

In addition, at time t = 1 there are A^O) and A^2(0) old poor 
and rich people, respectively, who hold H( 0) units of currency 
and maturing bonds of par nominal value i?(0). The old alive at 
time t = 1 simply offer all of their currency inelastically in 
exchange for goods to those young at that time. 

The young of each generation t > 1 are assumed to maximize 
the utility function ch

t(t)ch
t(t+1) where c%s) is consumption of 

the s-period good by an agent of type h born at time t. Letting 
wf(s) be the endowment of the 5-period good of an agent of type 
h born at and assuming that each agent faces a single rate of 
return Rh, a young agent h at generation t chooses a lifetime 
consumption bundle to maximize utility subject to the present-
value constraint, 

c%t) + [ c f r + l ) / ( l + * * ) ] 

= w%t) + [ w ? ( m ) / ( i + * * ) ] . 

The solution to this problem is the saving function: 

(A2) w%t) - c%t) 
= K ( / ) - [w^t+mi+R")])/!. 

Since all saving of poor people is in the form of currency, if h 
is poor, 1 + Rh = p(t)/p(t+1). Moreover, in the range where 
p(t)/p(t+1) < 1 + ^ , only the poor hold currency. Thus, in this 
range, the money market equilibrium condition is tha tH(t ) /p ( t ) 
equals the total real saving of the poor, which by (A2) is Nx(t) {a, 
— [a2P(^+l)//7(0]}/2. Dividing by N(t), we can write this 
condition as 

(A3) H(t)/m)p(t)] = {a, " [a2p(t+l)/p(t)]} 

X Nx(t)/2N(t). 

This is equation (10) if we let y, /2 = axNx(t)/2N(t) and y2/2 = 
a2Nx(t)/2N(t). [Recall that Nx(t)/N(t) is constant.] We get 
equation (5) if a2 = 0. 

According to (A2), each rich person saves a constant 
amount j3/2 per period. As long as government bonds bear the 
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real rate of return R, each rich person is indifferent between 
holding government bonds or holding private capital. However, 
in the aggregate, the rich only wish to save N2(t)p/2 per period. 
The number p/2 determines an upper bound on per capita 
holdings of interest-bearing government debt, the sort of bound 
alluded to in the paper. We let K(t) denote the total amount of 
real investment (storage), measured in goods, undertaken by the 
young members of generation r, all of them rich. We then have 

(A4) K(t) + B(t) = N2(t)p/2 = B(t) 

where B(t) is the amount of loans to the government. Equation 
(A4) expresses the result that additional government borrowing 
merely crowds out private investment on a one-for-one basis. 

The national income identity can be written like this: 

(A5) NMcft) + N,(t- l)cU» + 

+ N2(t - l)cf_,(0 + K(t) + G(t) 

= N^a, + Nx(t~\)a2 + N2(t)P 

+ T(t) + ( l+ / f )AXr- l ) . 

Here G(t) denotes government purchases and T(t) denotes total 
direct taxes. The government deficit as defined in our paper is 
related to G(t) and T(t) by D(t) = G(t) - T(t). 

Thus, as long as solutions satisfy/?(t)/p(t+1) < 1+R and the 
total real bond supply is less than B(t), the model just described 
implies all the assumptions made in the paper. This particular 
model also implies how different agents fare under different 
policies. The present-value budget constraint set out above 
indicates that each poor person is better off the lower the 
inflation rate, that each rich person is unaffected by the inflation 
rate, and that those who at t = 1 are in the second period of their 
lives and are holding currency or maturing bonds are better off 
the lower the initial price level,p{\). These observations are 
what lie behind our claim in the paper that, for the example in the 
second section, the tight money policy is Pareto inferior to the 
loose money policy.* 

*By pursuing the example in the second section of the paper and other 
examples comparing the welfare of agents across stationary states, the model can 
be used to support Milton Friedman's 1948 prescription that the entire 
government deficit be financed by creating base money. 
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Appendix B 
A Model in Which Tighter Money Now 

Can Cause Higher Inflation Now 

In this appendix, we analyze the model in the second section of 
the paper which generalizes the model of the first section by 
assuming that the demand schedule for base money depends on 
the expected rate of inflation. The particular demand schedule 
that we use resembles Cagan's (1956) famous demand schedule 
and can be deduced formally from the model in Appendix A by 
assuming that the poor of each generation are endowed with 
y ^ O J / A ^ O ) > 0 units of the consumption good when they are 
young and y2N(0)/Nl(0) > 0 units when they are old. (The 
model in the first section of the paper emerges when we set y2= 
0.) Except for this generalization, all other features of the model 
remain as they were in the first section of the paper. 

As before, we assume a demand schedule for base money of 
the form 

(Bl) H(t)/[N(t)p(t)] = (y,/2) - [(y2 /2)p(t+\)/p(t)) 

for t > 1, where yj > y2 > 0. [This is equation (10) in the second 
section of the paper.] Except for replacing equation (5) with this 
equation, we retain the features of the model in the paper's first 
section, including the budget restraint (1) and the law of motion 
of total population (2). We describe experiments similar to the 
one in that section: we hold the per capita real government debt 
b(t) constant for t > T and examine the choice of alternative 
rates of growth of base money 6 for t = 2 , . . . , T. The step of 
replacing (5) with (B1) substantially complicates the dynamics 
of the system, as we shall see. 

We begin by examining the behavior of the system for t > T. 
For t > T + 1 we specify as before that monetary policy is 
determined so that b\t) = b(t~ 1) = b(T). Using the budget 
constraint (1) together with this condition implies 

(B2) m ) - m-mN(t)p(t)\ 

= {[*(/-l)-«]/(l+K)}Z>(r) + [D(t)/N(t)] 

for t > T + 1. We now assume that 

D(t)/N(t) = d 

for t > 7", where d is a constant. This is a computationally 
convenient assumption, although the general flavor of our 
results does not depend on making it. 

We now define per capita real balances as m(t) = 

H(t)/[N(t)p(t)] and the one-period gross inflation rate as 
Ti(t)= p(t)/p(t—\). In terms of these variables, equations 
(Bl) and (B2) become 

(B3) m(t) = (y/2) - (y2/2>7r(r+1) 

for t > 1 and 

(B4) m(t) ~ }m(r-l)/[77(0(l+«)]} = ? 

for t > T + 1, where 

5 = p-Az)/(l+«)]Z>(r) + d. 

The variable ^ has the interpretation of the per capita deficit that 
must be financed by seignorage from time T+1 onward. 
Eliminating m(t) and m(t— 1) from these equations by substitut-
ing (B3) into (B4) leads to the following nonlinear difference 
equation in i:(t) for t > T + 1: 

(B5) 7T(r+l) = X - ( y A J I W + n m / m 

where 

= (r,/y2) + [ i / ( i + " ) ] - (2?/y2). 

Equation (B5) is graphed in the accompanying figure. It is 
readily verified that if 

(B6) X2 - {4y1/[y2(l+«)]} > 0 

then (B5) has two stationary points, their values being given by 

7T, = ( l /2)[A-(X 2-{4y, / [y 2( l+«)])) 1 / 2] 
(B7) 

772 = ( l /2)[X+(X 2 -{4y, / [y 2 ( l+«)] | ) 1 / 2 ] . 

We let f be the value of | for which the left-hand side of (B6) 
equals zero. Evidently, | is a function of y1? y2, and n and 
represents the maximum stationary per capita deficit that can be 
financed by seignorage. From (B7), it follows that, if £ = 0, then 
71!= 1/(1+H),7r2= y/y2 . From the graph of (B5), it immediate-
ly follows that, for | > £ > 0, 7Tj > 1/(1+«), tt2 < y,/y2, and 
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Equation (B5) 

7r(f+1) = X-(r i/y2)[1/(1+n)][1/7r(0] 

raising £ causes TT{ to rise and TT2 to fall. 
Inequality (B6) is a necessary and sufficient condition for it 

to be possible to finance the per capita deficit £ by seignorage. 
Assuming (B6) is satisfied, there exists a multiplicity of 
inflation-real balance paths that finance the deficit. Any setting 
of TT(T) satisfying TT{ < TT(T) < y/y2, with 7r(/) for t > T + 1 being 
given by (B5), results in the deficit being financed. (Later we 
shall describe the money supply paths needed to accomplish 
these paths for inflation.) The graph of (B5) shows that, for any 
7Tj < TT(T) < y{/y2, ir(t) —' 7t2 as t —• 00. Thus, there are three 
classes of inflation paths which finance the deficit: 

1. The stationary path with ir(t) = tt{ for t > T. 
2. The stationary path with n(t) = n2 for t > T. 
3. Nonstationary paths with y/y2 > TT(T) > TTX and 

lim, = 7t2. 

We assume that the government selects the money supply 
path so that TT(T) — TT19 that is, so that the deficit is financed by 
the uniformly lowest inflation rate path and, therefore, in view of 
(B3), the lowest price level path. This assumption is reasonable, 
since this selection leaves the government with the same 
resources as any other selection, while leaving holders of money 
better off. 

Having determined the inflation rate p(t)/p(t~ 1) = ux for 
t > T + 1 from (B6), we can determine the time Treal balances 
and price level by setting t = T in (B3): 

H(T)l\N(T)p(T)\ = (y,/2) - (y2/2)TT, 

(B8) p(T) = (2/y1){l/[ 1 - (y2/yM}[H(T)/N(T)]. 

Since H(T) and N(T) are given at T, this equation determines 
p(T) as a function of TT{. Also, since TT(t) is constant for t > T+ 1, 
we have from (B3) and the definition of m(t) = H(t)/[N(t)p(t)] 
that 

H{t)/N(t) = ir\H{t— 1 )/N(t~ 1)] 

for t > T + 1, so that per capita nominal balances grow at the 
constant gross rate TT{, which is the rate of inflation for t > T + 1. 

It is instructive to describe briefly the following alternative 
way to solve the system for t > T 4- 1 by obtaining a pair of 
linear difference equations. Define h(t) = H{t)/N(t), and write 
the budget constraint (B2) as 

h(t) = [l/(l+n)]h(t-l) + «/>(/) 

for t > T + 1 and the demand function for base money (B1) as 

Pit) = (yJyMt+U + (2/yx)h(t) 

for t > 1. Using the lag operator L, we write these two equations 
as 

(B9) {1-[1 / (1+n)\L)h( t ) = Zp(t) 

for t>T + 1 and 

[1 ~ (y2/y\)L~x\p{t) = (2!yx)h(t) 

for t > 1. Solving the second equation in terms of h(t) gives 

(BIO) p(t) = (l/yx)[\-{y2/yx)L-x}-xh{t) + c{y{/y2y 

or 

(Bll) p(t) = (2/r,) Sj= 0 (y 2 /y ,yh( t+j) + c(y,/y2)' 

for t > 1, where c is any nonnegative constant. Substituting 
(BIO) into (B9) and operating on both sides of the result with 
[1 — [y2/yx)L~x] gives the following homogenous difference 
equation in h(t): 

(B12) L~L{-\ + XL - [l/(l+A2)](y,/y2)L2}/z(0 = 0. 

The characteristic polynomial in L can be factored in the usual 
way so that 

(B13) L_1[(l — 7RJL)(l — TT2L)]h(t) = 0 
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where TTX and TT2 are the same roots given in (B7). 
Since for <J > 0 we have ttx < tt2 < y,/y2, it follows that the 

geometric sum in current and future h(t) that appears in (B11) 
converges for any h(t) paths that satisfy (B13), or equivalently, 

(B14) h(t) = (TT{ + TT2)h(t-\) ~ 77,77^(^-2) 

for t > T + 1, with h(T) given and h{T+1) free. To insure that 
the deficit is financed each period, we have to add two side 
conditions to those listed under (B14): we must set c = 0 in 
(BIO) and set h(T+1) so that (BIO) implies that tt(T+1) < 
y,/y2. All of the price level paths with c > 0 have lim,_ ^(t) = 
y,/y2, which in view of equations (B3) and (B4) implies that 
Urnt^ jn i t ) = 0 and that a positive deficit cannot be financed. 
Any path with tt(T) > yx/y2 implies nonpositive real balances at 
T. Since we are assuming that the government selects h(t) = 
TTxh(t~ 1), for t > T+ 1, and h(T) is given, equation (B11) with t 
= T becomes equivalent to equation (B8). We note that the 
admissible paths given by (B14) with h(T+\) ^ vxh(T) have 

1 ) ] = 7r2 and so constitute the per capita 
nominal money supply paths that correspond to the inflation 
paths with 7r(7) > 77, in the graph of (B5). 

In summary, we have that for t > T the price level and the 
stock of base money per capita evolve according to 

(B15) p(t) = (2/y1){l/[l-(y2/y1)7r1]}/Z(0 

(B16) h(t+1) = TTxh(t) 

subject to H(T) given, where 7r, is given by (B7). 
We now describe the behavior of the price level, the supply 

of base money, and the stock of real government debt per capita 
for t < T. As in the first section of the paper, we assume a 
constant growth rate of base money [see equation (4) in the 
paper, which we repeat here as (B17)]: 

(B17) H(t) = (l+0)H(t-l) 

for t = 2, 3 , . . . , T. Equation (B10) with c = 0 implies that for 
all r > 1 

(B18) p(t) = (2/y,) S j = 0 ( y ' J y t f K t + j ) . 

Further, we know from (B17) and (B16) that for t = 1, 2 , . . . , 
T-1 

(B19) h(t+1) = ph(t) 

where 

(B20) jU = ( l+f l ) / ( l+«) 

and for t = T, T+1, ... 

(B16) /z(/+1) = 7jxh(t). 

Let us define the parameter 0 by 

(B21) 0 = y2/y, 

and write (B18)forf < T as 

(B22) p(t) = (2/y,) Z ^ o <PKt+j) 

+ (2/y) H j = T _ t + x Vh{t+ j ) . 

Substituting (B19) and (B16) into (B22) and using some algebra 
implies 

(B23) p(t) = (2/y,){[l - 077, + (771-M)0 r-'+l
Ju r~'] 

- [(1-077.X1-0Ja)]>/!(0 

for t < T. 

Next, we define s(t) as per capita seignorage: 

s(t) = \H(t) - H(l-\)\/\N(t)p(t)\. 

For t < T, we have that 

5(0 = \h{t-\)/p(t)][e/(\+n)] 

s(t) = [6/{\ +6)\\h(t)/p{t)}. 

Using (B23) in the above equation gives 

(B24) s{f) = [0/il+^)](y1/2){(l-0iu)( 1-077,) 

- [1 - 077, + ( T T - p r f - ' + y - ' ] } 

for t > 2. Using (1) from the paper, the definition of and the 
definition d(t) = D(t)/N(t), we have the law of motion for per 
capita real interest-bearing government debt: 

(B25) bit) = [ (1+J?)/(1+«)]W-1) + d(t) - sit) 

for T> t > 2. Finally, we repeat equation (7) as equation (B26), 
which is the special version of (B25) for t = 1: 

(B26) b{ 1) = {BiO)/[Nil)pi\)]} + di 1) 

- {[//(l)-//(0)]/[7V(l)p(l)]} 

where B(0) is the nominal par value of the one-period interest-
bearing debt that was issued at time t = 0. 

In Table B1 we have collected the equations describing the 
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Table B1 

Equations Describing the Behavior of the System Before and After T, 
the Date Interest-Bearing Government Debt PerCapita is Stabilized 

Path of Before T (1 < t < T) After T ( t > T ) 

Base Money 
PerCapita 

(B19) h(t+1) = iih(t) 

(B20) ii = (1+0)/(1+n) 

(B16) h(t+^) = tr,h(t) 

Price Level (B23) p(t) = (2/y,){[1 - 07T-| + (7r1-/x)07-^V7~f] 

- [(1-07T1)(1 ~<t>lj)]}h(t) 
(B15) p(t) = (2/y1){1/[1-(y2/y1)7r1]}/7(f) 

Real 
Interest-Bearing 
Government Debt 
PerCapita 

(B25) b(t) = [(1+fl)/(1+n)]fc(f-1) + d(t) - s(t) 
for 2 <t<T 

(B26) b( 1) = {fl(0)/[A/(1)p(1)]} + d( 1) 

- ![H(1)-H(0)]/[/V(1)P(1)]} 

W = *>(T) 

Seignorage 
PerCapita 

(B24) S(f) = [0/(1 +6)](7i/2) {(1 -0M)(1 -077,) 

- [1 

for 2 < t < T 

07T, + ( T r - M ) 0 ^ + v r - n : 

s(f) = (ri/2)(1 -{1/1^(1+n)]}) 

Real Government Deficit 
N et of I nterest Payments 
Per Capita 

d(t) = D(t)/N(t) d(t) = d 

Parameters and Definitions 

h(t) = H(0/A/(0 0 = VTi 

A/(f) = (1 +n) A/(f—1) £ = [(/=?—n)/(1 +n)] t>(T) + d 

n = (1 +0)/(1 +/7) 

= (1/2)[X — (X2 - !4yi/[y2(1+n)]})1/2] 

X 35 (ri/y2) + [1/(1+n)] " (2£/y2) 

equilibrium before and after T. Starting at t = 1, the system 
works as follows. We take as exogenous a time path of the per 
capita deficit net of interest payments, [d(t)\ t > 1}, with d(t) = d 
for t > T. We further take as exogenous 2?(0) and//(0), which 
give the nominal par value of government debt inherited from 
the past. The date T is also taken as exogenous. The monetary 
authority chooses settings for / / ( l ) and 6. Then equations 
(B19), (B20), and (B23)-(B26) simultaneously determinep(t) 
and b(t) for t = 1, ..., T, while equation (B15) determinesp(t) 

for t > T. 
The equations of the model are linear in the endogenous 

variables, given a value for 7 .̂ However, from (B7) and the fact 
that f = [(/?-w)/(l+/i)]&(:r) + d, we see that tt, is itself a 
function of b(T), which in turn depends on the value of tt1 
through its effect on the behavior ofp(Y) and s(t) for 1 < t < T, 
via equation (B23). Thus, determining the equilibrium of the 
system involves solving a nonlinear system of equations. 

While the system can be solved in a variety of ways, we have 
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Table B2 

Another Spectacular Example of the Potential Effects 
of Tight and Loose Monetary Policy 

Tight Money: 0 = .106 Loose Money: 0 = .120 

Inflation Rate 
PerCapita 

Bond Holdings 
PerCapita 

Real Money Balances 

Date [P(f+1)/P(f)l [B(t)/N(t)\ {H(t)/[N(t)p(t)]} 

(t) Tight Loose Tight Loose Tight Loose 

1 1.0842 1.0824 0.0811 0.0811 0.1448 0.1470 
2 1.0841 1.0807 0.1196 0.1175 0.1448 0.1491 
3 1.0841 1.0788 0.1592 0.1547 0.1449 0.1515 
4 1.0841 1.0766 0.2000 0.1927 0.1449 0.1542 
5 1.0841 1.0742 0.2420 0.2316 0.1449 0.1573 
6 1.0840 1.0714 0.2852 0.2711 0.1450 0.1608 
7 1.0840 1.0682 0.3297 0.3115 0.1450 0.1648 
8 1.0840 1.0645 0.3755 0.3525 0.1450 0.1694 
9 1.0839 1.0602 0.4227 0.3941 0.1451 0.1 748 

> 1 0 1.0839 1.0552 0.4712 0.4363 0.1451 0.1810 

Parameters 

71 = 3.0 

72 = 2.5 

R = .05 

n = .02 
d(t) = 

.05 for t = 1,2, . . . ,10 . 

0 for t > 1 0. 

H( 0) = 1 00 

8(0) = 100 

N(0) = 1,000 

b( 1) = .08109 

found it convenient to use the following procedure based on 
backwards recursions. We begin by taking 0, but not H( 1), as 
given. We choose a value for b(T) and solve (B7) for ttv Then 
we recursively solve (B24) and (B25) backwards for values of 
{Z>(0,s(H-1); t = T-1, T-2, . . . , 1}. Also, from (B23) we can 
determine per capita real balances h(t)/p(t) for t = 1, ..., T. 
Finally, given the values of b( 1) and h( 1 )/p( 1) thus determined, 
we solve equation (B26) for the value of H{ 1) [or, equivalently, 
ofp(l)] . This procedure produces a choice o f H { \ ) and 0 and 
associated sequences for b(t),p(t), h(t), and s(t) that solve the 
system. 

By employing iterations on this procedure, the model can be 
solved taking b( 1) as given. The method is simply to search over 
solutions of the type described in the previous paragraph, 
varying b(T) until the specified initial value of b( 1) is found. In 
this way, a set of equilibria with different 0's can be calculated, 
each one of which starts from the same value of b( 1). In a similar 
fashion, equilibria can be generated with different 0's, each one 
of which starts from the same value of H( 1). [Of course, Z>(1) 
will then differ across the different 0's.] This last procedure was 
the one used to generate the examples in the paper, each of 
which started with H( 1) = 164.65. 

We now describe the results of using this solution procedure 
to compute the equilibria of an economy with the parameters {yl5 
y2, N(0), d(t), B(0), H(0), T, Z>(1)! under different monetary 
policies, that is, different values of 0. Since the values of 0 are 
different, the values of the economy's endogenous variables 
{p(t); t > 1} and {b{t)\ t > 2) will, in general, be different. 

Table B2 compares two very different monetary policies in a 
particular economy. Under both policies, the economy has y} = 
3.0, y2 = 2.5, N(0) = 1,000, n = .02, d{t) = .05 for 1 < t < Ty 
d(t) = d = Ofor/ > T,B(0)= 100,7/(0)= 100,7*= 10,6(1) = 
.08109, a n d = .05. The tight money policy is 0 = . 106, while 
the loose money policy is 0 = . 120. As can be seen from the 
table, for alk > 1, the tight money policy produces a uniformly 
higher inflation rate than the loose money policy. Note that, as 
expected, the loose money policy is associated with a slower 
rate of bond creation from t= 1 to t = 10 and that therefore that 
policy ends up permitting slower growth in base money from T 
on than does the tight money policy. Thus, tighter money now 
implies looser money later, as in the economy described in the 
first section of the paper. 

In the present example, however, the effect of expected 
future rates of money creation on the current rate of inflation is 
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Table B3 

An Intermediate Example of the Potential Effects 
of Tight and Loose Monetary Policy 

Tight Money: 6 .01 Loose Money: 6 = .03 

Parameters 

T, = 2.0 

y2 = 1-5 

Inflation Rate 
PerCapita 

Bond Holdings 

R = .05 

n = .02 
d(t) .05 for f = 1,2, . . . ,10 . 

0 for t > 10. 

PerCapita 
RealMoneyBalances 

Date 
[P('+I v m [B(t)/N(t)\ {H(t)/[N(t)p(t)}} 

(t) Tight Loose Tight Loose Tight Loose 

1 1.0043 1.0192 0.1500 0.1500 0.2468 0.2356 
2 1.0089 1.0221 0.2020 0.1976 0.2433 0.2335 
3 1.0150 1.0258 0.2556 0.2467 0.2388 0.2307 
4 1.0227 1.0306 0.3108 0.2973 0.2330 0.2249 
5 1.0326 1.0367 0.3677 0.3496 0.2256 0.2225 
6 1.0449 1.0444 0.4264 0.4036 0.2163 0.2167 
7 1.0601 1.0539 0.4869 0.4594 0.2030 0.2096 
8 1.0781 1.0656 0.5493 0.5170 0.1915 0.2008 
9 1.0989 1.0796 0.6137 0.5767 0.1759 0.1903 

> 1 0 1.1221 1.0960 0.6802 0.6385 0.1585 0.1780 

H( 0) = 1 00 N( 0) = 1,000 

8(0) = 100 b(1) = 1.4999 

sufficiently strong that tighter money initially produces higher 
inflation in both the present and the future. This happens 
because, via equation (B18), the higher eventual rate of money 
creation associated with the lower path more than offsets the 
downward effects on the initial inflation rates that are directly 
associated with the lower initial rate of money creation. Like the 
closely related example in the paper, this comparison provides a 
spectacular example in which tighter money now fails to buy 
even a temporarily lower inflation rate than does looser money 
now. 

Table B 3 compares different 0's in an economy that provides 
an intermediate example, one between the paper's first section 
economy and the later spectacular examples. This economy 
maintains the parameters y{ = 2.0, y2 = 1.5,N(0) = 1,000, 
n = .02, d(t) = .05 for 1 < t < T, d(t) = d = 0 for t > T, 
B(0) = 100,7/(0)= 100, T= 10,6(1)= 1.4999, and/? = .05. 
Here the tight money policy is 8 = .01, while the loose money 
policy is 6 = .03. Under tight money, the economy experiences 
a lower inflation rate for 1 < t < 5, but a higher rate for t > 5. 
[Here the gross inflation rate at t is defined as the right-hand rate 
p(t+1 )!p(t).\ In this case, the effect of the higher eventual rate of 
money creation that is associated with the initially tighter policy 

causes inflation to be higher even before T, when money 
actually becomes looser. But this effect is not strong enough to 
eliminate completely the temporary benefits of tight money on 
the current inflation. Still, notice that, compared to the paper's 
first section example, the effect of the initial tight money on the 
initial inflation rate is considerably weakened. With all other 
parameters the same, but y2 = 0 (the first section case), we 
would have h a d p ( t + l ) / p ( t ) = ( l+0) / ( l+w) = .9902 for 1 < 
t<T. 
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Appendix C 
Sufficient Conditions for Tighter Money Now 

to Cause Higher Inflation Now 

This appendix* establishes sufficient conditions for the case 
where a tighter monetary policy (lower 0) leads to a uniformly 
higher price level and inflation rate for alU > 1. The method is 
by construction: a pair of inequalities will be reduced to a single 
relation by the correct choice of certain parameter values. We 
satisfy the inequalities by making the implicit discount rate 
[ 1 — (y2/y,)] sufficiently low, while maintaining convergence of 
the relevant infinite sum. 

Let 0h and 0, denote a higher and a lower monetary growth 
policy, respectively: that is, 0h > 0,. Then we want both1 

(CI) Pl(0,) > pt(0h) 

and 

(C2) p t + x ( 8 M ^ > P t M P t Q k ) 

for all By (B15) and (B16) in Table B1, for t > T,P[+ x(0)/pt{0) 
= 77,(0). For policy experiments that fix bx, it is clear that (over 
the relevant range) a lower 0 leads to a higher bT and hence to a 
higher f. This is exactly the statement that a tighter monetary 
policy now implies a higher deficit to be financed by seignorage 
from time T+1 on. From the graph of (B5) in Appendix B, it is 
clear that an increase in £ increases the value of the root 77,. 
Therefore, 77,(0,) > 77,(0,,). Hence, condition (C2) is satisfied for/1 

> T. Condition (C1) follows, at most, T' periods after T(where 
T' is finite), given (C2) for t > T. 

Hence, we restrict attention to t < T. It is clear that, if (C2) 
holds for t < T, then /?,(0,) > px(0h) implies (C1) for t < T and 
therefore for all t. From (B26), 

p,(0) = [(B0+H0)/Nx]/(bx - dx + \Hx{0)/[NxPx{0)})). 

But by (B23), 

Hx(0)/[NxPx(6)] = hx(0)/px(0) 

= (y,/2)([l - 077,(0)][1 - 0/*(0)]/{l - 077,(0) 

+ (77 , (0 ) - M (0 ) ]0V(0r 1 }) . 

Calling this w,(0), px(0) = kx/[k2 + m,(0)], where kx = 
(BQ+H0)/Nx mdk2=bx~dx. C l e a r l y , > 0. T h e n £ 2 + m , ( 0 ) 
> 0 for positive px(0). Then px(0,) > px{0h) if and only if 
m,(0h) > m^,). 

Define the function 

T(0, 0, t) = 1 - 077,(0) 

+ (77, (0)- M (0)]0 r - + 1 /x(^) r - / . 

Then, using (B19), (B20), and (B23) to write out explicitly 
p[+x(0)/pt(0) and the above characterization of the price level 
condition, (CI) and (C2) for t < T are equivalent to 

(C3) [1 - 077,(0^)1 (i - 0 M ) ] / r ( 0 , oh, 1) 

> ( l - 077,(0 /)][ l -0 Ja(0 /)] / r(0,0 / , 1) 

and 

(C4) ( 1 + 0 ^ ( 0 , 0 ^ + 1 ) ^ ( 0 , ^ 0 ] 

> ( l + 0 , ) [ r ( 0 , 0 „ r + l ) / T ( 0 , 0 „ / ) ] 

for t > T. We need to choose 0 = (y2/yx), 0/, 0h that satisfy (C3) 
and (C4) and support positive values for nominal balances, 
prices, and bond holdings and real values for 77, and 7T2. 

Recall that, given bx, bT can be found if 77, is known. But 77, is a 
function of bT. The only case where 77, is determined indepen-
dently of bT is 77, = 772 = [0(1+fl)]~ l / 2 , as is easily seen by 
comparing (B12) and (B13). This occurs at the maximum value 
of that yields real roots for the characteristic polynomial in 
(B13). Using this, we pick a 0, to simplify (C3) and (C4). 
Conditions on parameter values that satisfy these two inequali-
ties will then become transparent. 

Let 0, solve ^(0,) = 71,(0,) = [0(1+«)]"1 / 2 . Since 
1^0,) = ( l+0 , ) / ( l+« ) , this gives 0, = (1+«)1 / 20~1 / 2 . Choosing 
77, = 772 = [0 ( l+ t f ) |~ l / 2 implies a value for £(and hence for bT) 
by comparing (B12) and (B13). Then fixing 0, determines bx by 
recursively solving (B24) and (B25) backwards. This value of bx 
is kept constant across policy experiments (different 0 settings). 

Choosing ^(0,) = 77,(0,) simplifies (C3) and (C4) to 

(C5) 11 - 077,(0,)][1 - 0 M W X 0 , K 1) > 1 - 0/1(0,) 

and 

(C6) 1 + 0, > ( l + 0 , ) [ r ( 0 , 0/7, f + l ) / T ( 0 , 0H, /)] 

*This appendix was written by Danny Quah, a graduate student at Harvard 
University. 

'For simplicity with the and 6j, notation, time is indicated by a subscript in 
this appendix, rather than parenthetically, as in the paper and other appendixes. 
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for t < T — 1. It will be shown below that we want to set 0 = 
[7r,^)]-1. Then r ( 0 , eh9 r + i ) / r ( 0 , eh9 t) = [<t>^eh)r1, so that 
the right-hand side of (C6) is approximately /-independent. 
Therefore, consider (C6) for t = 1, and rewrite (C5): 

(C7) [ 1 - 0 M W 

> r(0, 6h, !>/{[ 1 - 077,(^)][1 -

(C8) 1 + e, > (i+0„)[rM>, eh, 2)/r(0, eh> i)]. 
Maintain [1 — <pjJ-(Oh)\ and [1 — 077,(^)] positive; multiply the 
left- and right-hand sides of (C7) by the corresponding sides of 
(C8) to get, after some manipulation,2 

(C9) [(1+ #/)/( 1+ #/,)]{[ 1 - M W - 0M(fl/)]} 

> r ( 0 , eh9 2)/[i - 077^,)]. 

The left-hand side of (C9) is the product of two terms, each of 
which is easily seen to be slightly less than unity for small 
(6H-0T) > 0. Therefore, the left-hand side of (C9) is ( 1 - e ) for 
small E > 0. 

Write the right-hand side of (C9) as 

i + 1 - 0 * ] 

= 1 +8. 

By the choice of 0,9 ttx(6,) = fi(d,). Therefore, 0h > 6, implies 
7Tx(0h) < jjiSh). Hence, 8 < 0 and can be made arbitrarily large in 
magnitude when 0 approaches arbitrarily close to TTx(Oh)~1 from 
below. This will satisfy condition (C9). 

The condition for real and positive 77, given Z?r(for d = 0) is 

bT < (y2/2)[(l+«)/(*-«)](( 1/0) + [l/(l+/i)] 

- {2/[0(l+*)]1/2}). 
Values for bT that are too low will imply negative bx. To 
guarantee strictly positive bX9 set bT as high as desired by 
increasing both y2 and yh keeping 0 = y2/y, at the chosen value. 

In recapitulation, the method involves carrying out the steps 
above in reverse order. Choose y2/y, sufficiently close to 1; set y2 
so that maximum bT appears high enough. Calculate 0,and work 
backwards from bT to bx. Then, using this value of bx, set 6h so 
that (0h—d,) is small and positive. 

2This procedure almost always obtains the desired example. I say "almost" 
because, strictly speaking, (C7) and (C8) imply (C9), but the converse is not true. 
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